II B.Tech - II Semester - Regular Examinations - JULY 2022

TRANSFORM TECHNIQUES, NUMERICAL METHODS AND NUMBER THEORY (INFORMATION TECHNOLOGY)

Duration: 3 hours	Max. Marks: 70
Note: 1 This paper contains questions from	n 5 units of Syllabus Fach unit carries

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

<u>UNIT – I</u>

1.	a) Find the Laplace transform of $\left(\sqrt{t} - \frac{1}{\sqrt{t}}\right)^3$	7 M					
	b) Find $L\{te^{-3t}cos2t\}$	7 M					
	OR						
2.	a) Find the Laplace transform of						
	(i) $e^{2t}sin2t$ (ii) sin^22t	7 M					
	b) Find the Laplace transform of						
	(i) $tcos(\omega t + \theta)$ (ii) $e^{-3t}u(t-2)$	7 M					
<u>UNIT – II</u>							
3.	a) Find (i) $L^{-1}\left\{\frac{s^2}{s^4-a^4}\right\}$ (ii) $L^{-1}\left\{\frac{s}{(s+3)^2}\right\}$	7 M					
	b) Evaluate (i) $L^{-1}\left\{ log \frac{s+1}{s-1} \right\}$ (ii) $L^{-1}\left\{ \frac{s}{(s^2-4)^2} \right\}$	7 M					
	OR						
4.	a) Find (i) $L^{-1}\left\{\frac{s}{2s^2-8}\right\}$ (ii) $L^{-1}\left\{\frac{s+1}{s^2+s+1}\right\}$	7 M					

b) Evaluate $L^{-1}\left\{\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right\}$ using convolution theorem. 7 M

UNIT-III

- 5. a) Find the root of the equation $2x \log_{10} x = 7$ which lies between 3.5 and 4 by Regula falsi method. 7 M
 - b) Apply Lagrange's method to find the value of y for x = 10 from the following table:

7 M

7 M

- 6. a) Find a real root of the equation $x^3 5x 7 = 0$ using the Newton–Raphson method.
 - b) Estimate the values of f(42) from the following data.

X	20	25	30	35	40	45
y=f(x)	354	332	291	260	231	204

$\underline{UNIT} - IV$

- 7. a) Find the value of y for x = 0.4 by Picard's method, $y' = x^2 + y^2$, y(0) = 0. 7 M
 - b) By modified Euler's method, find y(0.1), y(0.2) and given that $\frac{dy}{dx} = x + y, y(0) = 1$ 7 M

OR

- 8. a) Using Taylor 's series method find an approximate value of y at x = 0.2 for the differential equation $y' 2y = 3e^x$, y(0) = 0.Compare the numerical solution obtained with the exact solution. 7 M
 - b) Find y(0.1) using Runge Kutta fourth order formula, 7 M

given that $\frac{dy}{dx} = x^2 - y$, y(0) = 1 and compare the result with analytical method.

$\underline{UNIT} - \underline{V}$

9.	a)	Define greatest common divisor (GCD) of two integers	
		a and b. Also find GCD of 24 and 96.	7 M
	b)	Find all positive integers n for which the congruence	
		$a^{25} \equiv a \mod n$ holds for all integers <i>a</i> .	7 M
		OR	
10.	a)	By Fermat's theorem, Find the remainder when 5^{38} is	
		divided by 11.	7 M
	b)	Show that if for a positive integer n the number	
		$2^n + 1$ is prime then <i>n</i> must be a power of 2.	7 M